Randwick International of Education and Linguistics Science (RIELS) Journal Vol. 5, No. 2, June 2024 | Page 595-611 |

https://www.randwickresearch.com/index.php/rielsj

Development of a Web-Based Interactive Multimedia Problem-Based Learning Approach on Algorithms and Programming Material

DOI: https://doi.org/10.47175/rielsj.v5i2.993

| Ajeng Zanna Tirahna^{1,*} | R. Mursid² | Sriadhi³ |

^{1,2,3}Department of Education Technology, Postgraduate, Universitas Negeri Medan, Medan, Sumatera Utara, Indonesia

* ajengzannatirahna@gmail.com

ABSTRACT

This research and development aims to produce interactive multimedia based on problem-based learning (PBL) using the Web to improve student learning outcomes in algorithms and programming material that is feasible, practical, and effective. This type of development research uses the ADDIE model. This research was carried out at SMK Negeri 6 Mukomuko, the material on algorithms and programming in the informatics class X Phase E. The results of the research show: (1) Expert validation test on product material in the very feasible category, namely 88.14%. (2) The Instructional Design Expert validation test is in the very feasible category, namely 95.56%. (3) The Media Expert validation test is in the very feasible category, namely 91.46%. (4) Individual trials in the very good category, namely 87.55%. (5) The small group trial was in the very feasible category, namely 89.65%. And (6) field trials in the very feasible category, namely 89.15%. The practicality test was very practical, namely 96.67%, while the practicality test results for students were 95.59% in the very practical category. The results of the experiment using PBLbased interactive multimedia in the experimental class gave an average learning outcome of 84, while students who were taught without using PBL-based interactive multimedia got an average score of 60.9. Hypothesis testing uses an independent t-test with significant results. (2-tailed) of 0.00, where the result is <0.05, it is concluded that there is a significant difference between classes taught using PBL-based interactive multimedia and classes taught without using PBL-based interactive multimedia

KEYWORDS

interactive multimedia; Problem Based Learning; web; algorithm and programming

INTRODUCTION

Technological developments in the digital era have transformed many industries, including education. The integration of technology in learning has caused significant changes in the way education is delivered and experienced by both teachers and students. One key aspect of this transformation is the digitalization of learning organizations, which involves the integration of digital technologies into various aspects of educational institutions, such as teaching, learning, and administration (Ifenthaler et al., 2021). This digital transformation has made education more accessible, allowing students to learn from anywhere and at any time, overcoming obstacles such as illness or full-time work (Raja and Nagasubramani 2018).

This transformation certainly has an impact on education in Indonesia, where the quality of education is an essential factor in determining the quality of human resources in a country (Mulyani, 2022). More than that, quality education also plays an important role in the progress of a country. The key to shaping a country's progress is prioritizing education. By developing education, a generation of people can be created who have better mindsets and habits to face problems and challenges.

The content of this informatics subject is very different from the information and communication technology (ICT) that teachers are familiar with. Informatics is defined as a scientific discipline that seeks to understand and explore the world around us, both natural and artificial, which specifically relates not only to the study, development, and implementation of computer systems but also to understanding the basic principles of development based on an understanding of the world. real and artificial worlds (Wisnubhadra et al., 2021). Students are expected to study informatics subjects not only to become computer users but also to realize their role as problem solvers.

Programming algorithm material is a sub-material in informatics subjects. The programming algorithm material is complex and difficult for most students to understand. Students must understand the branching structure and looping structure, which really require activities for coding practice. Along with this, interest in this material may decrease due to the perception that it is unpleasant or irrelevant in everyday life (Smith, 2020; Johnson, 2018).

Through the results of observations of class Most students only rely on textbooks as their main guide to learning. Students experience difficulties understanding algorithms and programming material because the teacher's teaching is monotonous and lacks variety. The KKM in the algorithm material is 75; however, based on observations of student learning outcomes, it is still far below the KKM.

The interactive multimedia developed has an embedded online programming compiler, so students can carry out coding practicums through the interactive multimedia developed. Interactive multimedia is developed according to the syntax in the PBL model. Interactive multimedia can combine all media consisting of text, image, sound, animation, and video elements, as well as interactivity developed on the basis of learning theory and principles. The advantage of interactive multimedia in terms of interactivity is that it is capable of forcing users to interact with the material both physically and mentally, which is influenced by the effectiveness of the instructions on the media, so that it is able to encourage users to be active in the learning presented (Dewantara et al., 2020). Several other advantages are that multimedia is able to change passive learners into active learners, so the teacher is no longer the center of information but becomes a facilitator who guides students in acquiring knowledge (Dewantara et al., 2020).

Several findings state that using interactive multimedia can help students understand the material (Firmansyah et al., 2020). Interactive multimedia has a high level of feasibility and effectiveness when used in algorithms and programming material (Yusuf, 2022; Alisyafiq, 2021; Samodra & Sutrisno, 2021). The use of interactive learning multimedia in the learning process is very effective in attracting students' interest in learning and making learning more interactive, thus improving students' learning outcomes significantly (Arifin et al., 2021).

Zega & Lase (2022) state that the use of web-based interactive multimedia is an effective approach to the learning process. Tazkia et al. (2019) stated that web-based interactive multimedia is very valid, practical, and feasible for improving student learning outcomes. Furthermore, the collaborative learning model based on e-learning with the use of interactive multimedia for learning outcomes is conceptually based on an overall

learning approach that can be applied to facilitate, grow, and develop learning awareness so that you are able to think, feel, and use your body in solving life problems. in the real world (Mursid, R. et al., 2023).

Gerlach and Ely (Putri, 2023) argue that, broadly speaking, media are people, materials, or events that create conditions that enable students to acquire knowledge, skills, and attitudes. AECT (Association for Educational Communication and Technology) defines media as all forms and channels used in the process of conveying information. Miarso (2011) stated that media is anything that can stimulate students' thoughts, feelings, attention, and will so that it can encourage the learning process in students.

Learning media is anything that can be used to mediate a message to the recipient so that it can stimulate students' ideas, sympathy, feelings, and interest in being involved in learning activities (Tofanao, 2018).

Multimedia is a combination of various media (file formats) in the form of text, images, graphics, sound, animation, video, interactions, etc. that have been packaged into digital files (computerized) and used to convey messages to the public. Meanwhile, interactive is two-way communication or more than communication components. This can be interpreted as meaning that interactive multimedia is a multimedia display designed by designers so that the display fulfills the function of informing the message and has interactivity for the user. Reddi & Mishra (Abdillah, 2020) state that interactive multimedia is the integration of elements of several media (audio, video, graphics, text, animation, etc.) into a synergistic and symbiotic whole that produces more benefits for the end user than any of the media elements can provide individually.

Interactive multimedia is used together with various media elements such as text, graphics, animation, and video. This is in accordance with the opinion of Vaighon 1998 (Zyahrok et al., 2020), which states that "multimedia is a combination of text, graphics, art, sound, animation, and video, which are interrelated elements." Multimedia can follow the wishes of the user, display multimedia projects, and control the elements presented. From several opinions, it can be concluded that interactive multimedia is a combination of various learning media packaged into one computer system to make it easier for users to use it at the same time and to follow the user's wishes when the multimedia is displayed.

PBL-based interactive multimedia is a learning approach that combines the power of multimedia technology with problem-based learning methods. The essence of this approach is to utilize interactive multimedia, such as text, images, audio, video, animation, and various interactive features, to create a more interesting, effective, and actively involved learning experience.

Interactive multimedia is a learning event or activity that utilizes website media connected to internet access in the learning process (Arief et al., 2018). Interactive multimedia offers several advantages, namely speed and unlimited time and space for accessing information. E-learning provides a very effective learning experience (Rohdiani & Rakhmawati, 2017). Learning activities can be easily carried out by participants because they are connected to the internet network. Websites are able to provide information more efficiently and up-to-date. Websites are more easily accessed by people in various regions just by using the internet (Hasugian, 2018).

The formulation of the problem in this research includes: (1) What is the feasibility of PBL-based interactive multimedia using the web for algorithms and programming material? (2) What is the practicality of PBL-based interactive multimedia using the web for algorithms and programming material? (3) How effective is PBL-based interactive multimedia using the web in algorithms and programming material?

RESEARCH METHODS

The research method applied in this study is the Research and Development (R&D) method. The development carried out in this research utilized the ADDIE development model. ADDIE consists of five stages, which include analysis, design, development, implementation, and evaluation (Hidayat, 2021), to develop PBL-based interactive multimedia using the web in algorithm and programming material for class X Phase E informatics subjects.

This research was carried out at SMK Negeri 6 Mukomuko, which is located at Mekar Mulya Village, Penarik District, Mukomuko Regency, Bengkulu Province. This research begins in the first semester of the 2023–2024 academic year.

The subjects in this research were students. The stages of PBL-based interactive multimedia product design can be seen in Table 1 below:

Table 1. PBL-based interactive multimedia product design stages

NT.		nnt t
No.	Interactive Multimedia	PBL phase
1	Home page, Login, Home	-
2	Learning and usage instructions	Phase 1:
3	 Present a problem in text/video 	Orient students to the problem, explain the
	form	logistics required, motivate students
	A form is provided to	
	write/upload answers to problems	
4	Main material in the form of	Phase 2:
	video/animation	Organizing students to learn
5	Multiple choice practice activities,	
	matching, fill in the blank	
6	Illustrations or animations and	
	interesting facts	
7	 Problem Solving Tasks (equipped 	Phase 3:
	with solving instructions)	Guide individual or group investigations.
	Equipped with a form for writing	
	the results of problem solving and	Phase 4:
	equipped with an online C++	Develop and present work results. Helping
	compiler (for solving problems	students prepare appropriate results and
	related to C++ programs)	presenting them in results reports, including
	 Provided a bag for collecting 	helping students share assignments with their
		friends
8	Reflections	Phase 5:
		analyzing and evaluating the problem solving
		process, students are asked to provide their
		responses about the learning that has been passed

The form of learning outcomes text used is multiple choice text, which includes C1 (remembering). C2 (understanding), C3 (application), C4 (analysis), C5 (evaluation), and C6 (creating). Each correct answer is given a score of 1, and an incorrect answer is given a score of 0 (zero). Before this instrument is used, its quality is first examined through trials.

Table 2. Ouestion Grid

No	Material	Knowledge	Cognitive Process Dimensions					Number of	
1,0	1720002200	Dimensions	C1	C2	С3	C4	C5	C6	Questions
1	Characteristics	Factual	1,2				44	43	4
1	of algorithms	Conceptual	3,5		22				3

	and	Procedural	4						1
	programming languages	Metacognitive		18	25,26				3
	Algorithms in	Factual							
	narrative form,	Conceptual		14				45	2
2	pseudocode,	Procedural		15,16	24		40	46	5
	and Factual flowcharts	Metacognitive		17				47,48	3
	D 1 1	Factual			19,20	27,28	36		5
2	Procedural programming concepts	Conceptual			21	29,30	37		4
3		Procedural	6,7		23	31,32	35		6
		Metacognitive	8,9						2
	Branching	Factual		12,13			38		3
	logic in procedural programming languages	Conceptual							
4		Procedural							
		Metacognitive				33	42	49	3
	Loop logic in	Factual		10,11					2
5	Factual	Conceptual							
)	programming	Procedural					39		1
	languages	Metacognitive				34	41	50	3
	Total			9	8	8	9	7	50

The validity of test items shows the accuracy of a test item to measure what it wants to measure. According to Arikunto (in Saputra, 2022), this can be determined by correlating the score obtained from the item with the total score using point-by-point biserial correlation.

$$\gamma_{pbi} = \frac{Mp - Mt}{St} \sqrt{\frac{p}{q}}$$

Test reliability refers to the consistency of a test when used on the same subject with different administration times. This means that the test gives relatively or close to the same results. According to Arikunto (in Saputra, 2022), test reliability is calculated using the Kuder and Richardson formula, namely as follows:

$$r_{11=\left(\frac{k}{k-1}\right)\left(\frac{S^2-\sum pq}{S^2}\right)}$$

Table 3. Material Expert Validation Instrument Grid

No	Aspect	Indicators	
1	Material	Clarity of learning outcomes and learning objectives	
	information	Formulation of learning outcomes	
2	Material	Conformity of objectives with the curriculum	
	quality	Suitability of material to purpose (CP)	
		Up-to-date material	
		Description of a concept or theory	
		The order (syntax) of presenting the material	
		Conformity of material coverage with objectives (CP)	
		Suitability of material depth to objectives (CP)	
		Ease of understanding terms and formulations	
		Suitability of examples or illustrations to the material	
		Providing a summary	
		Suitability of time duration with presentation material	
4	Evaluation	Practice/exam instructions	

Conformity of question coverage to objectives (CP)
Distribution of question items based on question domain
Appropriateness of exam questions to time is provided

(Source: adapted from Sriadhi, 2018)

Table 4. Design Expert Validation Instrument Grid

	Table 4. Design Expert varidation instrument office			
No.	Aspect	Indicators		
1	Learning objectives	Suitability of the formulation of learning objectives		
2	Learning activities	Suitability of learning objectives at the learning activity stages		
		(introduction, core and conclusion)		
3	Learning methods	Suitability of methods to learning objectives		
		Suitability of methods to learning activities (introduction, core		
		and conclusion)		
		Suitability of the method to the characteristics of students		
		The effectiveness of learning methods in learning activities		
4	Learning media	Suitability of media to learning objectives		
		Suitability of learning media to learning objectives		
		Suitability of media to learning methods		
		Suitability of media to student characteristics		
5	Times	Accurate time allocation for each stage of activity		
		Suitability of time to learning methods		
6	Tests	Suitability of tests to learning objectives		

(Source: adapted from Bulo, 2020)

Table 5. Media Expert Validation Instrument Grid

No	Aspect	Indicators		
1	Aesthetics	Visual quality, text color composition, background		
		Accelerate text, visuals, audio and animation		
2	Guides and	Description of interactive multimedia		
	Information	Guide to using interactive multimedia		
3	Multimedia	Accuracy in the use of media navigation symbols		
	Performance	Ease of use of navigation buttons (usability)		
		Search accuracy and links (hyperlinks) with interactive multimedia		
		Interactive multimedia stimulus response interactivity with users and		
		systems		
		Ease of access to educational media		
		Interactive multimedia design gives an attractive and positive impression		
		Quality of interactive multimedia visual displays		
		The letters used are clear and legible		
		Color contrast in interactive multimedia design		
		Educandy media features can be accessed in their entirety		
4	Systematics	Media display (screen) layout		
		Menu facilities in media		
		Acceleration of letters, numbers and symbols		

(Source: adapted from Sriadhi, 2018)

Table 6. Test Instrument Grid for Multimedia User Students

No	Aspect	Indicators		
1	Learning	The description of the multimedia product is very clear		
	Objectives	The multimedia usage guide is easy to understand		
2	Material	Suitability of the material to the topic of discussion, learning objectives,		

	0 114				
	Quality	concepts or theories and scope of the material			
		Presentation of material arranged sequentially (hierarchically)			
		Providing examples or illustrations that are easy to understand			
3	Evaluation	The media provides instructions for taking exercises/exams			
		Practice/exam questions support the achievement of learning objectives			
		Exam results are reviewed or fed back in the media			
4	Media design	Learning media is easy to use			
	and facilities	Command buttons have accurate links (hyperlinks).			
		Learning media can be run without damage			
		Media provides interactive facilities for users			
		Letters, numbers and symbols on the media are written clearly			
		The visual images (graphics) on the media are very good			
		Audio quality is very good			
		Video quality is very good			
		Animation quality is very good			
		The coloring of the media content is very good			
5	Pedagogical	This media provides what students need			
	effects	Students are interested in using this media to learn			
		This media makes students more enthusiastic/active in learning			
		This media helps to understand learning material			
		This media helps improve students' abilities			
		This media provides what students need			

(Source: adapted from Sriadhi, 2018)

Table 7. Practicality Test Instrument Grid

Aspect	Indicator	Description			
	Ease of use of PBL	PBL-based Interactive Multimedia is easy to access			
	Based Interactive	PBL-based Interactive Multimedia provides flexibility in			
Accessibil	Multimedia	use			
ity		PBL-based Interactive Multimedia provides easy			
		navigation			
	Efficiency	PBL-based Interactive Multimedia helps save time in			
		learning preparation			
		Complete learning materials are available			
	Ease of helping to	Learning materials in video form attract students' interest			
Usefulnes	increase the	in learning			
S	achievement of	PBL-based Interactive Multimedia provides an interesting			
	learning objectives	learning experience			
		The available practice questions help students hone their			
		problem solving skills			
		Interactive Multimedia makes programming practice			
		easier			
	Interactive Multimedia	Multimedia provides interactive facilities for users			
	Display makes it easier	The language used in PBL-based Interactive Multimedia			
Presentati	for students to	is easy to understand			
on	understand new knowledge	Selection of font type and size is easy to read			

(Source: adapted from Mutmainnah, 2022)

Feasibility Test Data Analysis Techniques

The input obtained from the expert validation results is then analyzed using the following formula (Sriadhi, 2018): (1) Tabulate the answer scores for each instrument item in each

aspect; and (2) Find the average answer score for each aspect using the formula:

$$x = \frac{\sum X}{n}$$

Information:

x : Average score

 $\sum X$: Total score of statement items

n : Number of data (number of statement items)

Table 8. Interpretation of Expert Assessment and Acceptance of Multimedia Users

No	Interval Mean Score	Interpretation
1	4,17-5,00	Very Eligible
2	3,33-4,16	Eligible
3	2,50-3,32	Not Appropriate
4	1,00-2,49	Not Eligible

(Source: Sriadhi, 2018)

Practicality Test Data Analysis Techniques

Practicality analysis uses a Likert scale with the following steps: (1) Give a score for each item with answers of strongly agree (4), agree (3), disagree (2), and strongly disagree (1); (2) Adding up the total scores for all indicators; and (3) Practicality analysis using the equation:

$$P = \frac{F}{N} X 100\%$$

With description:

P = Percentage of practical value

F = Score obtained

N = Ideal score

Determine product practicality criteria. After the percentage of practicality value was obtained, grouping was carried out according to the criteria according to Sugiyono (2018) as shown in Table 9.

Table 9. Distribution of Practicality Analysis Results

Score	Criteria
85% - 100%	Very Practical
70% - 84%	Practical
55% - 69%	Quite Practical
40% - 54%	Less Practical
0% - 39%	Impractical

(Source: Sugiyono, 2018)

Effectiveness Test Data Analysis Techniques

Data collection techniques using posttests in control and experimental classes were carried out to determine the effectiveness of PBL-based interactive multimedia using the web with test results on algorithm and programming material for students. Next, the data generated from the test will be tested for effectiveness.

Before carrying out an effectiveness test with the t-test, there are requirements that must be met, namely carrying out a normality test and a homogeneity test. After both are fulfilled, the independent sample t-test can then be carried out on the research data.

Hypothesis test

The research hypothesis needs to be tested for truth, in this research the statistical technique used to test the hypothesis is the t-test (independent test).

Но $: \mu_1 = \mu_2$ Ha $: \mu_1 \neq \mu_2$ Information:

: Average student learning outcomes using the developed interactive multimedia μ_1 Average student learning outcomes without using the interactive multimedia μ_2

developed

Ha: There is a significant difference in learning outcomes between classes that study using interactive multimedia and classes that do not use interactive multimedia.

There is no significant difference in learning outcomes between classes that H0 : study using interactive multimedia and classes that do not use interactive multimedia.

To test the hypothesis, the two-party test formula is used:

$$t_{count} = \frac{\overline{x}_1 - \overline{x}_2}{S\sqrt{\frac{1}{n_1}} + \frac{1}{n_2}}$$

Where S is the root of the combined variance calculated by the formula:
$$S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} \text{ where } S = \sqrt{S^2}$$

Information:

: average experimental class score \overline{x}_1

: average control class score \overline{x}_2

: number of experimental class samples n_1

: number of control class samples : variance in the experimental class

: variance in the control class

S : combined variance : calculation price

with db = n1 + n2 - 2, the correlation criteria obtained are said to be significant (the hypothesis is accepted) if the t_count > t_table for a significance level of 5%.

RESULTS AND DISCUSSION

Results

Stages of analysis and storyboard design, then an initial PBL-based interactive multimedia product is built. PBL-based Interactive Multimedia was developed using the Moodle 4.1 platform. The following displays the UI/UX of an interactive multimedia product that has been developed by applying the phases of the PBL learning model:

Figure 1. Home page

Figure 2. Login page

Figure 3. Main material presented in video or ebook form

This testing is carried out at the end of software development to find out whether the software can function properly. The following is a table for interactive multimedia blackbox testing

Table 10. Results of interactive multimedia blackbox testing

No	Testing	Test Cases	Expected results	Test result	Concl usion
1	When Clicking the Login Menu	Click the login menu	The Dashboard Page appears	According to expectations	Valid
2	When you click on the My Courses menu	Click the My Courses Menu	A list of sub-chapter names for programming algorithm material appears	According to expectations	Valid
3	When you click on the sub-chapter menu, algorithm and programming material	Click Menu 1. Characteristics of algorithms and programming	Material components appear in the form of user instructions, problem solving, ebooks, video materials, let's practice, let's discuss and reflect	According to expectations	Valid
4	When Clicking the Troubleshoot Menu	Click the Troubleshoot Menu	Problems arise for students to solve problems	According to expectations	Valid
5	When Clicking on the E-book Menu	Click the E- Book Menu	A screen appears to view or download the E-Book	According to expectations	Valid
6	When you click on the learning video menu	Click the Material 1 menu – Algorithm Concepts	A display appears to view the learning video	According to expectations	Valid
7	When Click Menu Let's Practice	Click the Let's Practice Menu	Questions appear for practice	According to expectations	Valid
8	When you click on the Programming Practical Menu	Click the Programming Practical Menu	Practical questions and online C++ compilers appeared	According to expectations	Valid

No	Testing	Test Cases	Expected results	Test result	Concl usion
9	When you	Click the Let's	Questions appear for group	According to	Valid
	click on the	Discuss Menu	discussion	expectations	
	menu, let's				
	discuss				
10	When Clicking	Click the	The Reflection Input Page	According to	Valid
	the Reflection	Reflection	appears	expectations	
	Menu	Menu			

Table 11. Summary of the average percentage of feasibility research results for PBL-based Interactive Multimedia

No.	Respondents	Average	Percentage Average	Criteria
1	Material Expert	4,41	88,14%	Very Eligible
2	Learning Design Expert	4,78	95,56%	Very Eligible
3	Media Expert	4,57	91,46%	Very Eligible
4	Individual Trials	4,37	87,44%	Very Eligible
5	Small Group Trials	4,48	89,65%	Very Eligible
6	Field Trials	4,46	89,15%	Very Eligible
	Average	4,51	90,23%	Very Eligible

PBL-based Interactive Multimedia Practicality Test Results by teachers.

Table 12. Average percentage of PBL-based Interactive Multimedia media practicality test results for teachers

No.	Assessment Aspects	Average	Percentage Average	Criteria
1	Accessibility	4,67	93.33%	Very Practical
2	Usefulness	4,83	96,67%	Very Practical
3	Presentation	5	100%	Very Practical
	Average	4,83	96,67%	Very Practical

Practicality Test Results of the products developed which have been given to students.

Table 13. Average percentage of PBL-based interactive multimedia practicality test results for students

No.	Assessment Aspects	Average	Percentage Average	Criteria				
1	Accessibility	4,73	94,67%	Very Practical				
2	Usefulness	4,78	95,67%	Very Practical				
3	Presentation	4,82	96,44%	Very Practical				
	Average	4,78	95,59%	Very Practical				

The results of the research in the experimental class showed that the lowest score for students was 64 and the highest score was 100. Meanwhile, the mean score was 84. The following is descriptive data for the class that was taught using PBL-based Interactive Multimedia or called the Experimental class.

The results of the research in the control class showed that the lowest score for students was 40 and the highest score was 80. Meanwhile, the mean score was 60.93. The following is descriptive data for the class taught using textbooks, which is called the Control class.

Table 14. Normality Test

Tests of Normality							
	Kolmogorov-Smirnov ^a Shapiro-Wilk					'ilk	
GROUP	Statistic	Df	Sig.	Statistic	df	Sig.	

Learning	Experimental Class	0,146	30	0,101	0.947	30	0,141
Results	Control Class	0,144	30	0,114	0.956	30	0,242
a. Lilliefors Significance Correction							

From the results of the normality test carried out on the research data, the significance value for the experimental class was 0.141 and the control class was 0.242. Based on the criteria used, if the significance value is greater than 0.05, then the data can be said to be normally distributed.

Table 15. Homogeneity Test

Test of Homogeneity of Variances							
		Levene Statistic	df1	df2	Sig.		
Learning	Based on Mean	0,090	1	58	0,765		
Results	Based on Median	0,151	1	58	0,699		
	Based on Median and with adjusted df	0,151	1	54,374	0,699		
	Based on trimmed mean	0,93	1	58	0,762		

Based on the homogeneity test results table above, a significance value of 0.765 was obtained. Based on the criteria used, if the significance value is greater than 0.05, then the data is said to be homogeneous.

Table 16. Hypothesis testing using t-test

Independ	Independent Samples Test							
t-test for Equality of Means								
							95% Confi	dence Interval
				Sig. (2-	Mean	Std. Error	of the l	Difference
		t	df	tailed)	Difference	Difference	Lower	Upper
Learning	Equal	8,286	58	0.000	23,067	2,784	17,494	28,639
Results	variances assumed							
	Equal	8,286	57,971	0.000	23,067	2,784	17,494	28,639
	variances	0,200	37,771	0.000	23,007	2,704	17,424	20,037
	not							
	assumed							

From Table 16, it can be seen that the significance value (2-tailed) is 0.000, which means the value is less than 0.05. Based on these results, it can be concluded that there is a significant difference in learning outcomes between classes that study using PBL-based interactive multimedia and classes that do not use PBL-based interactive multimedia.

Discussion

The development of interactive multimedia products in this research was carried out by taking into account the results of needs analysis, curriculum, and student characteristics. Therefore, the use of the PBL model is able to facilitate these needs. The PBL-based interactive multimedia that has been developed contains algorithms and programming material, and in this material there are many programming practicums. For this reason, the development of interactive multimedia has embedded a C++ online compiler to support programming practicum students. This is in line with the research results of Amri et al. (2020), who found that interactive multimedia can improve student learning outcomes.

There are five main materials in the developed PBL-based interactive multimedia, including: (1) Characteristics of Algorithms and Programming, (2) Narrative Algorithms, Pseudocode, and Flowchar; (3) Programming (Data Types, Variables, and Operators); (4) Branching Logic; and (5) Looping Logic. In this interactive multimedia presentation,

problem-solving exercises related to problems that occur in the five main topics are presented. The development of interactive multimedia was developed so that students do not find it difficult in the algorithm and programming learning process; it is more varied, systematic, and fun. So this interactive multimedia is expected to be able to support the achievement of learning objectives and improve student learning outcomes in algorithms and programming material.

The findings of this study are in line with several other studies that demonstrate the feasibility of interactive multimedia. Research by Fakhriah et al. (2022) found that the interactive media developed had very good eligibility criteria based on several aspects, such as presentation techniques, media, visuals, material content, language, material explanations, quizzes, and evaluation. Research by Anggraeni et al. (2021) developed interactive multimedia, which received very good eligibility criteria based on several aspects such as media aspects, technical quality, material coverage, material accuracy, upto-dateness, and media presentation. Tabrani et al. (2021) found that the interactive multimedia developed had very good eligibility criteria based on several aspects, such as material presentation, content suitability, media suitability, and language presentation.

Theories related to the practicality of interactive multimedia support these findings. According to Arikunto (2010), practicality is related to the ease of use of evaluation tools, both in preparation, use, interpretation/conclusion of results, and storage. Milala (2022) also states that practicality refers to the ease of use of learning media by teachers and students, which makes the learning process meaningful, interesting, fun, and useful, as well as increasing creativity in the learning process.

The findings of this research are also in line with previous research, which shows the practicality of interactive multimedia. Research by Arifin et al. (2021) found that the interactive multimedia developed made it easier and more helpful to understand the learning material. Yusuf et al. (2022) show that the interactive multimedia developed is very valid, very suitable, and very practical and can support the learning process for teachers and learning resources for students.

Based on the results of the research and data processing carried out, there are significant differences in the learning outcomes of algorithms and programming material between students who learn using PBL-based interactive multimedia and students who are taught using textbooks. Students who study using PBL-based interactive multimedia get a higher average score compared to students who study using textbooks. This is in line with the opinion of Nuriansyah (2020) that learning media that involve active interaction and have new or unique elements can increase students' enthusiasm for learning, and this increase in motivation will help improve learning outcomes. Mursid, R. et al. (2022) stated that improving learning outcomes is very helpful in achieving quality science and knowledge in the field, problem solving, developing interests and talents, as well as the application of technology in the 21st century in the ability to think creatively through the application of holistic and effective learning strategies.

This finding is in accordance with existing theory that the use of effective learning media is used to increase the achievement of learning objectives (Nurhayati, 2019). Apart from that, interesting multimedia learning media can help increase students' interest and motivation to learn. Interesting media can also make it easier for students to understand and remember the material presented.

This is in line with the research results of Amri et al. (2020), who found that interactive multimedia can improve student learning outcomes. Sekarwangi et al. (2021) show that the results of using PBL-based interactive multimedia play an important role in the effectiveness of learning activities. Mashami and Khaeruman (2020) showed similar

results for PBL-based interactive multimedia. PBL can improve the generic learning outcomes of students, and Mursid, R. et al. (2023) stated that the collaborative development model based on e-learning can provide appropriate benefits so that it can increase students' understanding through the use of various ICT-based learning resources, and its application is directly based on e-learning.

CONCLUSION

Based on the formulation, objectives, results, and discussion of the development of PBL-based interactive multimedia, it can be concluded as follows:

- 1. The PBL-based interactive multimedia developed is very suitable for use in the class X algorithm and programming material at SMKN 6 Mukomuko.
- 2. The PBL-based interactive multimedia developed is very practical to use in class X algorithms and programming material at SMKN 6 Mukomuko.
- 3. The PBL-based interactive multimedia developed is very effective for use in the class X algorithm and programming material at SMKN 6 Mukomuko.

REFERENCES

- Abdillah, T. R. (2022). Pengembangan Media Pembelajaran Interaktif Menggunakan Metode Ivers & Barron. *Jurnal Tika*, 7(2), 179–188. https://doi.org/10.51179/tika.v7i2.132
- Alisyafiq, Shidqie. (2021). Aplikasi Pembelajaran Multimedia Interaktif Algoritma Dan Pemrograman Dasar Untuk Mahapeserta didik Berkebutuhan Khusus Berbasis Android. Other *thesis*, Univeristas Komputer Indonesia
- Amri, M. F., Saragih, A. H., & Yulia, E. (2020). The development of Interactive Learning Media based on Problem Based Learning (PBL) using Macromedia Flash 8. *Proceedings of the 5th Annual International Seminar on Transformative Education and Educational Leadership (AISTEEL 2020)*. https://doi.org/10.2991/assehr.k.201124.039
- Anggraeni, S. W., Alpian, Y., Prihamdani, D., & Winarsih, E. (2021). Pengembangan multimedia Pembelajaran Interaktif Berbasis video untuk Meningkatkan Minat Belajar Siswa Sekolah Dasar. *Jurnal Basicedu*, *5*(6), 5313-5327. https://doi.org/10.31004/basicedu.v5i6.1636
- Arief, R., Wazirudin, M. I., Rachman, A., & Hapsari, D. P. (2018). *Pengembangan Aplikasi Pembelajaran Tik Berbasis Web Menggunakan Model ADDIE Untuk Peserta didik SMK*. Institut Teknologi Adhi Tama Surabaya, 509–514. http://ejurnal.itats.ac.id/sntekpan/article/view/333
- Arifin, Z., Tegeh, I., & Yuda Sukmana, A. (2021). Independent Learning through interactive multimedia based on problem based learning. *Jurnal Edutech Undiksha*, 9(2), 244. https://doi.org/10.23887/jeu.v9i2.41292
- Arikunto, S. 2010. Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta: Rineka Cipta Bulo, Mariliana Berlian. (2020). Pengembangan Strategi Pembelajaran Menyenangkan Permainan Bisik Berantai Pada Pembelajaran Bahasa Inggris Kelas II di SD Mardi Yuana. *Tesis*. Jakarta: Universitas Negeri Jakarta
- Dewantara, Rinu Bhakti, et al., (2020). Analisis Kebutuhan Pengembangan Multimedia Interaktif Berbasis Problem Based Learning pada Materi Biologi SMA. *Jurnal Pendidikan*, 5 (6), 749-753. https://www.neliti.com/publications/487785/analisis-kebutuhan-pengembangan-multimedia-interaktif-berbasis-problem-based-lea
- Fakhriah, L., Pramadi, R. A., & Listiawati, M. (2022). Pengembangan media Interaktif Berbasis Google slide Berbantu Aplikasi pear deck pada Materi Sistem Pertahanan

- Tubuh. *Jurnal Educatio FKIP UNMA*, 8(1), 15-21. https://doi.org/10.31949/educatio.v8i1.1473
- Firmansyah, F. H., Fajriyah Aldriani, S. N., & Dewi, E. R. (2020). Pengembangan Multimedia Pembelajaran Interaktif untuk Mata Pelajaran Matematika untuk Kelas 5 Sekolah Dasar. Edsence: *Jurnal Pendidikan Multimedia*, 2(2), 101–110. https://doi.org/10.17509/edsence.v2i2.29783.
- Hasugian, P. S. (2018). Perancangan Website Sebagai Media Promosi. *Journal Of Informatic Pelita Nusantara*, 03(01), 82–86. https://ojs.unikom.ac.id/index.php/visualita/article/view/6230
- Hidayat, F., &. (2021). Model ADDIE (*Analysis, Design, Development, Implementation and Evaluation*) Dalam Pembelajaran Pendidikan Agama Islam. *Journal Inovasi Pendidikan Agama Islam (JIPAI)*, 28-28. https://journal.uinsgd.ac.id/index.php/jipai/article/view/11042
- Ifenthaler, D., Hofhues, S., Egloffstein, M., & Helbig, C. (2021). *Digital transformation of learning organizations*. Springer Nature.
- Johnson, M. R. (2018). Making Programming Engaging: Strategies for Educators. *In Proceedings of the International Conference on Computer Science Education* (pp. 123-135).
 - https://www.researchgate.net/publication/350465131_Strategies_on_Teaching_Introducing_to_Programming_in_Higher_Education
- Mashami, Ratna Azizah and Khaeruman. (2020). Pengembangan Multimedia Interaktif Kimia Berbasis PBL (Problem Based Learning) untuk Meningkatkan Keterampilan Generik Sains Siswa. Hydrogen: *Jurnal Kependidikan Kimia*, 8 (2), 85-96. https://e-journal.undikma.ac.id/index.php/hydrogen/article/view/3138
- Miarso, Y. (2011). *Menyemai Benih Teknologi Pendidikan*. Jakarta: Kencana Prenada Media Group.
- Milala, H. Farta, et al. (2022). Keefektifan Dan Kepraktisan Media Pembelajaran Menggunakan Adobe Flash Player. *Jurnal Pendidikan Teknik Elektro*, *11*(2), 195-202. https://ejournal.unesa.ac.id/index.php/jurnal-pendidikan-teknik-elektro/article/view/43450
- Mulyani, A. Y. (2022). Pengembangan Critical Thinking dalam Peningkatan Mutu Pendidikan di Indonesia. *DIAJAR: Jurnal Pendidikan dan Pembelajaran*, 100-105. https://journal.yp3a.org/index.php/diajar/article/view/226
- Mursid, R., Saragih, A. H., & Hartono, R. (2022). The Effect of the Blended Project based Learning Model and Creative Thinking Ability on Engineering Students' Learning Outcomes. International Journal of Education in Mathematics, Science and Technology, 10(1), 218–235. https://doi.org/10.46328/ijemst.2244
- Mursid, R., Sriadhi, & Sitompul, H. (2019). The Effect of ICT-Based Learning Media and Innovation Attitude to Learning Result Teaching With HOTS. In: *Proceedings of The 2nd International Conference On Advance And Scientific Innovation, ICASI*, Banda Aceh,
 - https://www.researchgate.net/publication/337694469_The_Effect_of_ICT-
 - Based Learning Media and Innovation Attitude to Learning Result Teaching With Hots
- Mursid, R., Muslim., & Farihah. (2023). Collaboration-based development model elearning on course learning achievements working skills. International Journal of Instruction, 16(2), 307-328. https://doi.org/10.29333/iji.2023.16218a

Mutmainnah, F. N. (2022). Pengembangan E-LKPD Informatika Berbasis Problem Based Learning Untuk Meningkatkan Kemampuan Berpikir Komputasional Siswa Kelas X Sman 1 Silaut. *Tesis*, Pascasarjana Teknologi Pendidikan, Universitas Negeri Medan.

- Putri, A. S & Sadewa, D. (2023). Rujukan Animasi 2D Sebagai Media Pembelajaran Bahasa ArabTerhadap Materi Bagian Luar Tubuh Manusia Dengan Metode SAV. *Jurnal Teknik Informatika dan Terapan*, 1(2), 01-05. https://journals.indexcopernicus.com/publication/3883763
- Raja, R., & Nagasubramani, P. C. (2018). Impact of modern technology in education. *Journal of Applied and Advanced Research*, 3(1), 33–35. https://www.researchgate.net/publication/325086709_Impact_of_modern_technology_in_education
- Rohdiani, F., & Rakhmawati, L. (2017). Pengembangan Media Pembelajaran Berbasis Web Pada Mata Pelajaran Dasar Elektronika di SMK Negeri 3 Jombang. *Jurnal Pendidikan Teknik Elektro*, 06(01), 105–110. https://ejournal.unesa.ac.id/index.php/jurnal-pendidikan-teknik-elektro/article/view/18212
- Samodra, J., & Sutisno, A. (2021). Pengembangan Media Pembelajaran Algoritma Pemograman Berbasis Web. The 4 Conference on Innovation and Applicatioan of Science and Technology, Universitas Widyagama Malang.
- Saputra, H. D., et al. (2022). Hasil belajar mahasiswa: analisis butir soal tes. Edukasi: *Jurnal Pendidikan, Volume 20* (1), 15-27. https://doi.org/10.31571/edukasi.v20i1.3432
- Sekarwangi, T., Sartono, K. E., Mustadi, A., & Abdulah, A. (2021). The effectiveness of problem based learning-based interactive multimedia for elementary school students. *International Journal of Elementary Education*, *5*(2), 308. https://doi.org/10.23887/ijee.v5i2.31603
- Smith, J. A. (2020). The Challenge of Teaching Programming and Algorithms: Student Perceptions. *Journal of Computer Science Education*, 28(3), 259-274. https://www.researchgate.net/publication/314925658 CHALLENGES IN TEACHIN G PROGRAMMING AND ALGORITHMS
- Sriadhi. (2018). *Penilaian Kelayakan Multimedia Pembelajaran*. Medan: Universitas Negeri Medan
- Sugiyono. (2018). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: CV. Alvabeta.
- Tabrani, M., Puspitorini, P., & Junedi, B. (2021). Pengembangan multimedia interaktif berbasis Android pada materi kualitas instrumen evaluasi pembelajaran matematika. *Jurnal Inovasi Teknologi Pendidikan*, 8(2), 163-172. https://doi.org/10.21831/jitp.v8i2.42943
- Tazkia, Zahra, Sahyar & Juliani, Rita. (2019). Kelayakan Multimedia Interaktif Berbasis Web di Tingkat SMA. *Jurnal Pendidikan fisika*, 8 (1). https://jurnal.unimed.ac.id/2012/index.php/jpf/article/download/12651/pdf
- Tofanao, T. (2018). Peranan Media Pembelajaran Dalam Meningkatkan Minat Belajar Peserta didik. *Jurnal Komunikasi Pendidikan*, 2(2), 102-113. https://journal.univetbantara.ac.id/index.php/komdik/article/view/113
- Wisnubhadra, I., Wijanto, M. C., Natali, V., Mulyati, S., Pratiwi, H., Saputra, B., & Astiani, K. (2021). Buku Panduan Guru Informatika untuk SMP Kelas VII. Jakarta: Pusat Kurikulum dan Perbukuan. Retrieved from https://buku.kemdikbud.go.id/katalog/buku-panduan-guru-informatika-untuk-smp-kelas-vii

- Yusuf, A. (2022). Pengembangan Multimedia Interaktif Sub Materi Algoritma Dan Pemrograman Mata Pelajaran Informatika Pada Kurikulum Sekolah Penggerak Untuk Peserta didik Kelas X SMA. *Thesis*, Universitas Negeri Padang
- Zega, I. D., Ziliwu, D., & Lase, N. K. (2022). Pengembangan Media pembelajaran multimedia interaktif berbasis web Pada Materi Keanekaragaman Hayati. *Educativo: Jurnal Pendidikan*, 1(2), 430–439. https://doi.org/10.56248/educativo.v1i2.60
- Zyahrok, et al. (2020). Pengembangan Multimedia Interaktif Berdalam (Sumber Daya Alam) Pada Pembelajaran Ilmu Pengetahuan Alam Pada Siswa Kelas IV Sekolah Dasar. Undergraduate thesis, Universitas Nusantara PGRI Kediri